
Making DensePose fast and light

Ruslan Rakhimov1∗, Emil Bogomolov1∗, Alexandr Notchenko1,

Fung Mao2, Alexey Artemov1, Denis Zorin1,3, Evgeny Burnaev1

1
Skolkovo Institute of Science and Technology
2

Huawei Moscow Research Center (Russia)
3

New York University

{ruslan.rakhimov, e.bogomolov, alexandr.notchenko}@skoltech.ru,

fung.mao@huawei.com, a.artemov@skoltech.ru, dzorin@cs.nyu.edu, e.burnaev@skoltech.ru

Abstract

DensePose estimation task is a significant step forward

for enhancing user experience computer vision applica-

tions ranging from augmented reality to cloth fitting. Ex-

isting neural network models capable of solving this task

are heavily parameterized and a long way from being trans-

ferred to an embedded or mobile device. To enable Dense

Pose inference on the end device with current models, one

needs to support an expensive server-side infrastructure

and have a stable internet connection. To make things

worse, mobile and embedded devices do not always have

a powerful GPU inside. In this work, we target the problem

of redesigning the DensePose R-CNN model’s architecture

so that the final network retains most of its accuracy but be-

comes more light-weight and fast. To achieve that, we tested

and incorporated many deep learning innovations from re-

cent years, specifically performing an ablation study on 23

efficient backbone architectures, multiple two-stage detec-

tion pipeline modifications, and custom model quantization

methods. As a result, we achieved 17× model size reduc-

tion and 2× latency improvement compared to the baseline

model.1

1. Introduction

This work is dedicated to developing an architecture for

solving DensePose [1] estimation task with a particular re-

quirement: the model should be light-weight and run in

real-time on a mobile device.

The task of understanding humans in an image may in-

volve different formulations of the problem: 2d landmarks

localization, human part segmentation, 3d reconstruction,

∗Equal contribution
1Code is available at https://github.com/zetyquickly/

DensePoseFnL

dense image-to-surface correspondences (DensePose). In

this work, we target the multi-person formulation of Dense-

Pose task: given a single RGB image solve the regression

task: for each pixel, find its surface points (UV coordinates)

on a deformable surface model (the Skinned Multi-Person

Linear (SMPL) model [11]).

Finding surface correspondence is a step forward to a

general 3d human representation. Possible applications lie

in such fields, like augmented reality, virtual fitting rooms.

Densepose output may serve as input to another model. For

instance, it was used as an input in video-to-video transla-

tion tasks [22].

Besides the original pioneering work [1], which intro-

duces a carefully annotated COCO-DensePose dataset with

sparse image-to-surface ground-truth correspondences and

DensePose R-CNN baseline model, other works target dif-

ferent formulations. Parsing R-CNN [28], the winner so-

lution of the COCO 2018 Challenge DensePose Estimation

task, achieves state-of-the-art performance by scrutinizing

different blocks in the original DensePose R-CNN architec-

ture. Slim DensePose [13] explores the weakly-supervised

and self-supervised learning problem setting, by leveraging

motion cues from videos. [12] improves the performance of

the model by incorporating the uncertainty estimation into

the model. [15] shows the ability to transfer the dense pose

recognition from humans to proximal animal classes such

as chimpanzees without a time-consuming collection of a

new dataset with new classes.

However, none of the works target the task of making the

network fast and light-weight, and current solutions such as

baseline DensePose R-CNN and state-of-the-art Parsing R-

CNN introduce heavily parametrized models.

Make the network perform near to a real-time mode is a

particularly important step if we want to apply these models

in the mobile or embedded devices. In this work, we explore

the subtle trade-off between the performance of the model

and its latency.

1869

The contributions are the following:

• we created a pipeline to test neural network architec-

tures viability for mobile deployment,

• we developed an architecture based on existing tech-

niques, achieving a finally good balance between real-

time speed and average precision of our model,

• we performed an ablation study on many different ef-

ficient backbones, particularly applied for DensePose

task.

2. Related work

DensePose task. DensePose-COCO dataset contains

a large set of images of people collected “in the wild”

together with different annotations: (i) bounding boxes, (ii)

foreground-background masks, (iii) dense correspondences

— points p ∈ S of a reference 3D model S ∈ R
3 of the ob-

ject associated with triplets (c, u, v) ∈ {1, . . . , C}× [0, 1]2,

where c indicates which one of C body parts contains the

pixel and (u, v) represents the corresponding location (UV

coordinates) in the chart of the part [11]. The DensePose

task is then to predict such triplets (c, u, v) for each

foreground pixel and every person in the image.

DensePose R-CNN. The baseline dense pose prediction

model, and all the subsequent works [28, 12, 15] follow the

architecture design of Mask R-CNN [5].

The model first generates class-independent region pro-

posals (boxes), then classifies and refines them using the

box/class head. Finally, the DensePose head predicts the

body part and UV coordinates for each pixel inside the box.

Particularly, the model consists of many different blocks

(see Fig. 1):

• Backbone to extract features from the image,

• Neck to integrate features from different feature lev-

els of the backbone to effectively perform multi-scale

detection,

• Region proposal network (RPN) to propose a sparse set

of box candidates potentially containing objects,

• Heads take the features pooled from the bounding box

on the corresponding feature level, where the detec-

tion occurred, and produce output. The first head is

a box/class head, which finally predicts whether the

object is present in the box and refines the box coor-

dinates. The second head is the DensePose head that

predicts either the pixel belongs to the background or

assigns it to one of the 24 DensePose charts, and re-

gresses UV coordinates to each foreground pixel inside

the bounding box.

Model architecture optimisation. In recent years the neu-

ral architecture search (NAS) techniques gained popularity

[9]. The main aim of NAS is to find the optimal architec-

ture under specific hardware requirements. Usually, these

techniques are applied in simple setups, e.g., classification

networks, or in the case of two-stage object detection mod-

els, NAS is usually applied to individual parts of the model

[4]. In this paper, instead of creating one more design for a

particular part of the model, we try to test different existing

approaches and see what works best for the DensePose es-

timation task. Particularly, we evaluate several backbones

that were a result of NAS optimization and try to test them

out with other components.

NeckBackbone

C2

C3

C4

C5 P5

P4

P3

P2

P6 RPN

RPN | box/class head

RPN | box/class head

RPN | box/class head

RPN | box/class head | DensePose head

Figure 1. The high level structure of the Mobile Parsing R-CNN

model. Ci, Pi represent feature levels with a resolution of 1/2i of

the input image. P6 is obtained via stride-2 pooling on P5.

3. Mobile Parsing R-CNN

In this section, we address the design choice of different

parts inside our model, which we call Mobile Parsing R-

CNN. In general, the model’s design follows the Parsing R-

CNN model, the winner solution of the COCO 2018 Chal-

lenge DensePose Estimation task, but with different modi-

fications in different parts.

3.1. Backbone

While there are many different possible designs of a

backbone network, we target efficient models with a block

structure as that in MobileNetV1 and V2 [8, 16] (depth-wise

separable convolutions and inverted residuals with linear

bottlenecks). This base block is the foundation for most ef-

ficient backbones used today, which were selected for eval-

uation as the backbone of the improved model. Let us list

various architectures we use in our experiments:

• MobileNetV3. [7] applies neural architecture search

(NAS) and improves MobileNetV2 by adopting

Squeeze and excitation block for channel-wise atten-

tion and non-linearities like h-sigmoid and h-swish;

• MixNet. [20] develops a multi-kernel variant of Mo-

bileNetV2, i.e., depth-wise convolutions consisting of

convolutions with different kernel sizes;

1870

• Differentiable NAS considers the problem of finding

neural architecture in a differentiable way by carefully

designing search space. We consider the following

models, obtained using the differentiable NAS proce-

dure: MnasNet [18], FBNet [25], Single-Path[17];

• EfficientNets from [19] appear to be one of the first

architectures, obtained using AutoML approaches for

image classification, and achieve a good compromise

between the accuracy on a classification task and the

number of the parameters of the network. [19] shows

that one can apply a power-law scaling of width as

a function of depth. Later EfficientNets were cus-

tomized for Google’s Edge TPUs [3] using MNAS

framework [18];

• CondConv. Traditional convolutional layers have the

kernel weights fixed once they are trained. CondConv

[27] applies a linear combination of several kernels (a

mixture of experts) with weights generated dynami-

cally by another network based on the input. While

the original work is devoted to the classification task,

we explore this “dynamic” approach combined with

EfficientNets on the DensePose task.

3.2. Neck

The main challenge in the object detection pipeline is to

be able to detect objects of different scales. Earlier detec-

tors predict objects based on features extracted from dif-

ferent levels of the backbone. Later, feature pyramid net-

work (FPN [10]) proposes to integrate features in a top-

down manner to enrich fine-grained features from the low-

est level of feature pyramid with semantically rich infor-

mation from deeper layers. While the original work [10]

considers only the top-down pathway for information ag-

gregation, later works also add cross-scale connections be-

tween the feature levels. In this work, we make use of bidi-

rectional FPN (BiFPN [21]) for multi-scale feature fusion,

which outperforms its recent counterparts in object detec-

tion tasks (see [21]), while remaining light-weight and fast.

It is partly achieved by using separable convolutions inside.

3.3. Densepose head

We increase the region of interest (RoI) resolution for the

DensePose head from 14×14 to 32×32, as it was suggested

in [28].

While the original network uses 8 convolutions layers

in the DensePose head, we, instead, similar to [28], use

the atrous spatial pyramid pooling (ASPP) [2] module, fol-

lowed by 4 convolutional layers. Also, we omit the non-

local convolutional layer [23] between ASPP and convolu-

tional layers in order not to increase the latency of the net-

work because it performs pixel to pixel comparisons result-

ing in O(n2) operations, where n is the number of pixels.

Finally, the DensePose predictions happen on the finest

level from the feature pyramid as in [28], while box/class

predictions happen on all levels.

3.4. Quantization of backbone layers

We proposed the quantization procedure for Parsing R-

CNN based on quantization aware training tools provided

by PyTorch. First of all, it is necessary to patch the exist-

ing network architecture. Considering the whole network

operates with quantized tensors, we should find intermedi-

ate parts where floating-point tensors are crucial to obtain

satisfactory results.

1. RPN classification and regression heads use a 3 × 3
convolutional layer to produce a shared hidden state

from which one 1× 1 convolutional layer predicts ob-

jectness logits for each anchor, and another one pre-

dicts bounding-box deltas specifying how to refine the

anchor coordinates to get a final object proposal. These

layers work with quantized feature tensors, but for cor-

rect calculation of RPN proposals, predicted object-

ness logits and anchor deltas are dequantized after in-

ference of bounding box predictor.

2. To perform accurate RoI pooling, it is necessary first

to dequantize input features, apply pooling, and then

quantize features back.

The second step is fusion. We fuse each convolutional

and linear layer, followed by batch normalization and acti-

vation to one atomic layer. That is needed to save on mem-

ory access while also improving the operations’ numerical

accuracy. The third step is to run the quantization aware

training of the patched and fused model.

During the second and third steps, we run into design

obstacles that are described below.

In BiFPN architecture, we collect features before point-

wise linear convolutions using pre-forward hooks. This al-

lows us to link to this layer’s input rather than to the output

of the input provider. But quantization tools implemented

in the PyTorch framework at this stage do not allow this

to be done. We proposed a mechanism that preserves pre-

and post- forward hooks during fusion and preparation for

quantization and does not harm the quality of the quantiza-

tion process itself. The diagram of the proposed mechanism

is in Fig. 2.

4. Experiments

In this section, we provide the experimental results on

design choices for different parts of the model. The major-

ity of experiments are done on the cluster, and finally, we

transfer the model to a mobile device to check the perfor-

mance there.

1871

Figure 2. The feature collection scheme for quantized models.

4.1. Implementation details

The models were implemented in PyTorch using Detec-

tron2 [26] platform.

We choose hyper-parameters matching to those in Pars-

ing R-CNN[28], i.e., we use a batch of 16 images (2 images

per GPU), therefore we apply synchronous batch normal-

ization [14] instead of usual batch normalization wherever

it is used inside the backbone and neck. We use no normal-

ization in box/class and dense pose heads. We sample 512

RoIs for box/class head and 32 RoIs for dense pose head.

By default, we train models for 130k iterations with initial

learning rate 0.002, decreasing it by 10 at 100k and 120k

iterations. Under such a schedule, training of one model

takes approximately 1 day on 8 NVIDIA Tesla V100 GPUs.

Since all models are quite small, the memory consumption

during training allows to decrease the number of GPUs for

parallel training. Unless specified otherwise, by default,

we scale images in a way that shortest image size equals

800 pixels during the inference stage. Each model’s back-

bone is initialized with weights of the corresponding net-

work trained on the ImageNet classification task. We train

models on a combination of train and valminusminival par-

titions of Densepose-COCO dataset [1] and test them on a

minival partition.

4.2. Metrics

Following the original work, we use as evaluation metric

the Average Precision (AP) at a number of geodesic point

similarity (GPS) thresholds ranging from 0.5 to 0.95. We

also report box average precision.

As we are interested in deploying a DensePose model on

a mobile device, we report the number of parameters of each

model and FPS measured on CPU and GPU. In particular,

we measure the inference performance of all models on the

same NVIDIA GeForce GTX 1080 Ti. It is worth mention-

ing that the DensePose model is a two-stage model, so the

FPS of the model is directly conditioned on the performance

of the first stage of the model. There is a subtle trade-off be-

tween the quality and latency; as for example, the network

that does not predict any instances will never run dense pose

head, and vice versa, the network that produces many false-

positive results would redundantly run the model heads. As

the latency of the network is data-dependent, we average

latency time across DensePose-COCO minival dataset and

finally convert it to FPS.

4.3. Ablation on components

First, we implemented the Parsing R-CNN [28] in Detec-

tron2 following the original implementation. Then we mod-

ify the architecture exploiting the techniques presented in

the Section 3 and present two versions of a new model: Mo-

bile Parsing R-CNN (A) and Mobile Parsing R-CNN (B).

See the main architecture differences and obtained results in

Table 1. Parsing R-CNN outperforms the baseline Dense-

Pose R-CNN model by 4.9 AP, while the Mobile Parsing

R-CNN (A) becomes more light-weight with the densepose

AP similar to that achieved by the baseline model. The qual-

itative comparison can be seen in Fig. 3.

Specifically, Mobile Parsing R-CNN (A) is evolved from

Parsing R-CNN by careful choice of a backbone, removing

non-local block [23], decreasing the number of channels in

FPN and all heads. Finally, we replace linear layers with

convolutional ones in a box/class head. The results of a

backbone comparison for Mobile Parsing R-CNN (A) can

be seen in Table 2. We use the backbones pretrained on Im-

ageNet from [24]. First, we see that ResNet-50 provides a

solid baseline both in terms of AP and FPS. The good FPS

can be explained by the fact that the ResNet-50 is one of the

first widespread popular deep networks, and GPU manufac-

turers constantly include this model for bench-marking. In

the meantime, other networks contain specific new custom

layers and are mainly designed for mobile or embedded de-

vices. Nevertheless, by analyzing results in the Table 2, we

pick the Single-Path [17] backbone as a network providing

a good balance between FPS and the dense pose AP.

We move on from Mobile Parsing R-CNN (A) to Mobile

Parsing R-CNN (B), by introducing a new feature aggrega-

tion module (BiFPN [21] instead of FPN [10]) and further

decreasing the number of channels in the dense pose head

by a factor of 4, thus 8 times lower than in the baseline

architecture. The individual effects of each change can be

found in Table 3. The transfer from FPN to BiFPN results in

a reduced number of parameters, better box, and densepose

AP and the identical FPS. The 4× decrease of the number of

channels in BiFPN and all heads results only in 6.0 dense-

pose AP reduction, while increasing FPS approximately 2
times.

1872

DensePose R-CNN (baseline) [1] Parsing R-CNN [28] Mobile Parsing R-CNN (A) Mobile Parsing R-CNN (B)

Backbone ResNet-50 [6] ResNet-50 [6] Single-Path [17] Single-Path [17]

Neck FPN[10] FPN[10] FPN[10] BiFPN[21]

RoI resolution 14× 14 32× 32 32× 32 32× 32
Pooling Type RoIPool RoIPool RoIAlign RoIAlign

Box/class head 2 linear layers 2 linear layers 2 conv layers 2 conv layers

Feature level for prediction P2,P3,P4,P5 P2 P2 P2

DensePose head 8 conv layers ASPP[2]+NL[23]+4 conv layers ASPP[2]+4 conv layers ASPP[2]+4 conv layers

#Channels 512 512 256 64

#Params 59.73M 54.36M 11.35M 3.35M

GPU FPS 13.16 10.15 12.03 22.77 (3x LR: 23.55)

CPU FPS 1.62 1.39 1.42 2.02 (3x LR: 2.10)

box AP 57.8 59.609 56.370 55.39 (3x LR: 56.83)

densepose AP 49.8 54.676 49.512 46.79 (3x LR: 51.08)

Table 1. The main differences between the models presented. Results on DensePose-COCO minival. 3x LR refers to 3 times longer training

compared to the default setting. Pi represents a feature level with a resolution of 1/2i of the input images. #Channels represent the number

channels inside neck and heads.

Backbone Top-1 Accuracy (%) #Params box AP dp. AP GPU FPS CPU FPS

ResNet-50 [6] 77.15 33.61M 60.0 54.7 11.05 1.34
EfficientNet-B3 [19] 81.636 16.03M 59.027 53.084 8.31 1.37
EfficientNet-EdgeTPU-L [3] 80.534 17.89M 60.069 53.378 8.11 1.34
MixNet-XL [20] 80.120 19.10M 58.444 51.475 8.54 1.32
EfficientNet-B2 [19] 79.688 13.68M 58.041 51.800 9.33 1.38
MixNet-L [20] 78.976 14.62M 57.481 50.649 8.52 1.34
EfficientNet-EdgeTPU-M [3] 78.742 14.57M 58.825 52.302 9.21 1.37
EfficientNet-B1 [19] 78.692 13.03M 57.654 51.053 9.49 1.39
CondConv-EfficientNet-B0 [3, 27] 77.304 18.32M 56.779 49.231 10.63 1.40
EfficientNet-EdgeTPU-S [3] 77.264 13.12M 58.296 51.606 10.03 1.39
MixNet-M [20] 77.256 12.39M 56.834 48.371 9.39 1.35
EfficientNet-B0 [19] 76.912 12.10M 56.271 49.647 10.53 1.39
MixNet-S [20] 75.988 11.52M 55.132 46.685 10.34 1.37
MobileNetV3-Large-1.0 [7] 75.516 12.04M 54.537 47.195 11.54 1.40
MnasNet-A1 [20] 75.448 10.94M 54.648 47.036 11.21 1.38
FBNet-C [25] 75.124 11.49M 55.399 47.983 10.97 1.37
MnasNet-B1 [18] 74.658 11.31M 52.280 47.658 11.24 1.37
Single-Path [17] 74.084 11.35M 56.370 49.512 12.03 1.42

MobileNetV3-Large-0.75 [7] 73.442 10.92M 52.763 44.736 11.02 1.36
MobileNetV3-Large-1.0 (minimal) [7] 72.244 10.48M 52.464 44.632 11.33 1.36
MobileNetV3-Small-1.0 [7] 67.918 10.07M 49.614 35.808 10.62 1.35
MobileNetV3-Small-0.75 [7] 65.718 9.74M 44.224 32.650 10.16 1.33
MobileNetV3-Small-1.0 (minimal) [7] 62.898 9.58M 45.989 36.522 10.34 1.34

Table 2. Ablation on the backbone network used in Mobile Parsing R-CNN (A). The backbones are sorted by top-1 accuracy. Results on

DensePose-COCO minival

Our implementation of BiFPN differs from the original

one in terms of up-sampling and down-sampling procedure

type used to make features from different levels of back-

bone spatially compatible for the fusion. While the original

work uses a bilinear (up)down-sampling, we use a nearest-

neighbor variant since we found it to be much faster on mo-

bile devices, and the drop in AP is very slight. Also, in

the case of BiFPN, we use features before point-wise linear

1 × 1 convolutions, compared to “after” in case of FPN, as

it results in slight improvement of dense pose AP. Finally,

we train the model three times more iterations, i.e., 390k

iterations, reducing learning rate by 10 at 330k and 370k

iterations and call it Mobile Parsing R-CNN (B s3x).

4.4. Smartphonebased implementation

We evaluate the mobile model with Caffe2 runtime, run-

ning on a smartphone with ARM processor with 8 cores, 8

threads, and the highest core clock of 2600 MHz.

We use the deployment conversion tools provided by De-

tectron2 [26]. Specifically, the network is transferred first to

ONNX format, then to Caffe2 format.

In general, two-stage models introduce numerous hyper-

parameters. In case of test-time hyper-parameters, we found

empirically, among many different options, that choosing

1873

Neck #channels #Params box AP dp. AP GPU FPS CPU FPS

Mobile Parsing R-CNN (A) FPN 256 11.35M 56.371 49.512 12.03 1.42
BiFPN 256 10.53M 58.106 52.80 12.05 1.41
BiFPN 112 4.41M 56.41 49.64 19.04 1.78
BiFPN 88 3.82M 56.08 48.19 20.43 1.87

Mobile Parsing R-CNN (B) BiFPN 64 3.35M 55.39 46.79 22.77 2.02
Table 3. Ablation on neck type and number of channels. The number of channels is the same in neck and heads. Results on DensePose-

COCO minival

Figure 3. Qualitative comparison of different models. We depict contours with color-coded U and V coordinates as an output of the model.

image shortest side box AP dp. AP GPU FPS CPU FPS mobile CPU FPS

200px 36.449 19.028 27.549 10.277 2.355

400px 49.181 43.916 24.648 6.921 0.954

512px 51.709 47.887 26.970 4.976 0.640

600px 53.423 49.675 25.669 4.290 0.498

800px 54.744 50.560 24.033 3.046 N/A

1000px 55.163 49.466 20.061 2.071 N/A
Table 4. The impact of image size. Results are obtained with Mobile Parsing R-CNN (B s3x, test-tuned) on DensePose-COCO minival.

The N/A values correspond to tensor sizes that produced errors on mobile device

max # of people box AP box APs box APm box APl dp. AP dp. APm dp. APl GPU FPS CPU FPS mobile CPU FPS

1 83.110 - 83.389 83.173 54.329 48.203 54.765 27.508 5.859 0.684

2 74.700 24.058 56.672 77.359 52.402 47.694 52.991 27.729 5.626 0.664

3 71.508 16.357 54.621 76.280 52.324 47.973 52.905 26.767 5.584 0.638

4 68.818 19.532 52.693 75.693 52.050 43.131 52.838 27.198 5.510 0.606

5 66.756 20.252 53.543 74.807 51.468 44.154 52.501 27.732 5.443 0.603

Table 5. The impact of number of people in the frame on performance characteristics. Results are obtained with Mobile Parsing R-CNN

(B s3x, test-tuned) on DensePose-COCO minival. The shortest image side is 512 pixels

100 instead of 1000 region proposals per neck level after

non-maximum suppression (NMS) in RPN and changing

IoU threshold in NMS from 0.5 to 0.3 leads to a significant

boost of the model. Therefore later, we use this setup of the

model and call it Mobile Parsing R-CNN (B s3x test-tuned).

We check the impact of the image size on the model (see

Table 4). The lower resolution of the image, the faster in-

ference we get, but the reduction of image size results in a

reduction of densepose AP. In the case of mobile inference,

we apply the model on images with the shortest side of size

512 pixels, because it is the lowest resolution processed by

the model during the training phase.

We are mostly interested in practical applications on the

end-device with data fed straight from the device’s camera.

In this case, usually, the limited number of people appears

in the frame. We test the model performance on filtered

versions of COCO-DensePose minival partition, where the

filtering is based on the maximum number of people in the

image. The results can be seen in Table 5. One can see that

the fewer people are in the image, the better performance

of the model in AP and FPS. Usually, the fewer people in

the image, the more area each person occupies in the frame,

1874

Figure 4. Qualitative comparison of different backends. We depict contours with color-coded U and V coordinates as an output of the

model.

which leads to more accurate predictions. 4.5. Model quantization results

Here we report the performance statistics of the model

obtained using the quantization approach described in Sec-

tion 3.4. Thanks to the quantization, we increased the speed

1875

weights type model size dp. AP CPU FPS

float32 13.8mb 47.887 4.976

int8 4.3mb 44.033 8.310

Table 6. The effect of quantization. Results are obtained with

Mobile Parsing R-CNN (B s3x, test-tuned) on DensePose-COCO

minival. The shortest image side is 512 pixels

of inference by a factor of two and decreased the model size

by a factor of three. See exact values in Table 6.

5. Conclusion

In this work we showed that it is possible to significantly

compress and speed up models (17× model size reduction

and 2× latency improvement) for DensePose estimation

task utilizing existing state-of-the-art solutions of this

task’s subproblems, achieving a good balance between

speed, model size and average precision of the model.

In the process, we performed an ablation study of 23

different backbones and detection pipeline characteristics,

particularly applied for the DensePose task. By optimiz-

ing different parts of R-CNN-like models, we achieved

significant performance improvement compared to the

baseline model. We performed deployment of the final

model to the mobile device, measured its performance, and

discovered factors affecting it. The proposed architecture

Mobile Parsing R-CNN is both fast and light-weight.

Notably, the final model weighs 13.8MB and runs near

real-time ∼ 27 FPS on Nvidia Tesla 1080Ti GPU, and

∼ 1 FPS on a mobile device using the only CPU. Using

a runtime environment that utilizes mobile GPU or Neu-

ral Network acceleration hardware (NPUs), it would be

trivial to get near-real-time performance on a mobile phone.

Acknowledgment. The authors acknowledge the usage of

the Skoltech CDISE HPC cluster Zhores for obtaining the

results presented in this paper. This work was supported

partially by the Ministry of Education and Science of the

Russian Federation (Grant no. 14.756.31.0001).

References

[1] Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos.

Densepose: Dense human pose estimation in the wild. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 7297–7306, 2018.

[2] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. IEEE transactions on pattern

analysis and machine intelligence, 40(4):834–848, 2017.

[3] Efficientnet-edgetpu: Creating accelerator-

optimized neural networks with automl.

https://ai.googleblog.com/2019/08/

efficientnet-edgetpu-creating.html.

[4] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn:

Learning scalable feature pyramid architecture for object de-

tection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 7036–7045, 2019.

[5] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 2961–2969, 2017.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[7] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-

bilenetv3. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 1314–1324, 2019.

[8] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

[9] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, ed-

itors. Automated Machine Learning: Methods, Systems,

Challenges. Springer, 2018. In press, available at

http://automl.org/book.

[10] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyra-

mid networks for object detection. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 2117–2125, 2017.

[11] Matthew Loper, Naureen Mahmood, Javier Romero, Ger-

ard Pons-Moll, and Michael J. Black. SMPL: A skinned

multi-person linear model. ACM Trans. Graphics (Proc.

SIGGRAPH Asia), 34(6):248:1–248:16, Oct. 2015.

[12] Natalia Neverova, David Novotny, and Andrea Vedaldi. Cor-

related uncertainty for learning dense correspondences from

noisy labels. In H. Wallach, H. Larochelle, A. Beygelzimer,

F. d’Alche Buc, E. Fox, and R. Garnett, editors, Advances in

Neural Information Processing Systems 32, pages 920–928.

Curran Associates, Inc., 2019.

[13] Natalia Neverova, James Thewlis, Riza Alp Guler, Iasonas

Kokkinos, and Andrea Vedaldi. Slim densepose: Thrifty

learning from sparse annotations and motion cues. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 10915–10923, 2019.

[14] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu

Zhang, Kai Jia, Gang Yu, and Jian Sun. Megdet: A large

mini-batch object detector. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

6181–6189, 2018.

[15] Artsiom Sanakoyeu, Vasil Khalidov, Maureen S McCarthy,

Andrea Vedaldi, and Natalia Neverova. Transferring dense

pose to proximal animal classes. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 5233–5242, 2020.

[16] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

1876

residuals and linear bottlenecks. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 4510–4520, 2018.

[17] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios

Lymberopoulos, Bodhi Priyantha, Jie Liu, and Diana Mar-

culescu. Single-path nas: Designing hardware-efficient con-

vnets in less than 4 hours. arXiv preprint arXiv:1904.02877,

2019.

[18] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-

net: Platform-aware neural architecture search for mobile.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2820–2828, 2019.

[19] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. arXiv

preprint arXiv:1905.11946, 2019.

[20] Mingxing Tan and Quoc V Le. Mixconv: Mixed depthwise

convolutional kernels. arXiv preprint arXiv:1907.09595,

2019.

[21] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficient-

det: Scalable and efficient object detection. arXiv preprint

arXiv:1911.09070, 2019.

[22] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu,

Andrew Tao, Jan Kautz, and Bryan Catanzaro. Video-to-

video synthesis. arXiv preprint arXiv:1808.06601, 2018.

[23] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 7794–7803, 2018.

[24] Ross Wightman. Geffnet (pre-trained efficientnet

models). https://github.com/rwightman/

gen-efficientnet-pytorch.

[25] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-

vnet design via differentiable neural architecture search. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 10734–10742, 2019.

[26] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen

Lo, and Ross Girshick. Detectron2. https://github.

com/facebookresearch/detectron2, 2019.

[27] Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan

Ngiam. Condconv: Conditionally parameterized convolu-

tions for efficient inference. In Advances in Neural Informa-

tion Processing Systems, pages 1305–1316, 2019.

[28] Lu Yang, Qing Song, Zhihui Wang, and Ming Jiang. Pars-

ing r-cnn for instance-level human analysis. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 364–373, 2019.

1877

